

Sönke Knoch, Shreeraman Ponpathirkoottam, Peter Fettke, and Peter Loos

Sönke Knoch German Research Center for Artificial Intelligence (DFKI) BP-Meet-IoT, Barcelona, 11 September 2017

In this work a scenario in the manufacturing domain is addressed: Job shop manufacturing

• Job shop manufacturing:

- Assembly of *n* orders on *m* assembly workstations
- One order consists of a sequence of *s* work steps executed on workstations
- Orders can be assembled multiple times on one workstation or they can be left out
- Stands in contrast to flow shop manufacturing where on every workstation the same sequence of work steps is executed

Advantages:

- High flexibility supporting mass customization and batch size 1
- Assembly tasks more challenging and less monotonously

Disadvantages:

- High stocks and transport effort between assembly workstations
- Long cycle times and complex production plans

Example: Job shop manufacturing in an U-shaped line layout consisting of multiple assembly workstations (WS)

Challenge: Tracking and analyzing these assembly processes to optimize production (planning)

- Production planners and supervisors need accurate information on the assembly process to optimize scheduling and provide support
- Machine data can be gathered and analyzed
- Data on the manual assembly processes is hidden and hard to gather
- Current methods of process elicitation are time consuming and costly
 - Predetermined motion time systems, e.g., REFA and MTM
- Process mining might help, but formalized and complete logs are rare

Approach: Light-weight sensor instrumentation to become aware of the process and things involved

• Goal:

- Creation of meaningful event logs
- Event to process correlation

• Requirements:

- Light-weight instrumentation to support temporary observations
- No restriction of the worker's motion
- Low acquisition and operating costs
- Appropriate for manufacturing environments
- Integration in existing event streams

Solution (1/5): Sensing real world processes and creating a digital representation

Solution (2/5): Laboratory setting

Material in SLC	BG	BCD	Activity
BCD_Top_Casing	2	Task 1	Mount
BG_Top_Casing	Task 1	7.	Mount
Mainboard	Task 2	Task 2	Insert
Small_Screws (x2)	Task 3	Task 3	Screw
BCD_Application_Board		Task 4	Insert
BG_Application_Board	Task 4	-	Insert
Connecting_Board	Task 5	Task 5	Plug
Small_Screws (x2)	Task 6	Task 6	Screw
BCD_Bottom_Casing	25	Task 7	Clip
BG_Bottom_Casing	Task 7	-	Fit
Big_Screws (x4)	Task 8	-	Screw

• Sensors:

- 3 RGB cams
- 1 depth cam
- 1 infrared cam
- 2 ultrasonic

• Event processing:

• Bus: MQTT

• CEP: Apama

• Product:

- 2 variants: BG/BCD
- 8/7 tasks
- 10 materials
- 3 variant specific mat.

Solution (3/5): Activity recognition via RGB cameras (web cams)

- Definition of activity zones through editor interface
- Flexible labeling of these zones
- Activity detection with web cams: 30fps, algorithm at 20-25fps
- Background subtraction based on continuously updated Gaussian mixture model: last 500 frames
- Supports the filtering of shadows
- Sensitivity is configurable

Solution (4/5): Activity recognition via RGB+D cameras (Kinect)

- Definition of 3D activity zones through editor interface
- Flexible labeling of these zones
- Tracking of 25 joints at the rate of ca. 30fps
- The hand position from Kinect forms the center of a 3D activity sphere of 10cm radius
- The intersection of this activity sphere with a 3D activity zone surrounding an observed object is the trigger for activity detection
- The occlusion of the body and the viewing angle of the Kinect are factors that affect accuracy and need to be carefully handled

09/11/2017

Solution (5/5): Work step composition

```
event ManualWorkStep {
                                         inputs {
                                            ManualWorkStep() key timestamp
 string topic;
 integer timestamp;
                                            within 20 sec;
 dictionary<string, string> payload;
find ManualWorkStep:e1 -> ManualWorkStep:e2
where e1.topic ="#/ApplicationBoard/In" and e2.topic ="#/ApplicationBoard/Out"
  without (e3.topic ="#/ApplicationBoard/Out" {
       // matching found => create payload
       integer duration = e2.timestamp - e1.timestamp;
       dictionary<string, string> payload := {
              "material:STRING": "ApplicationBoard",
               "activity:STRING": "Application board supply",
               "timestamp:NUMBER": e2.payload["timestamp:NUMBER"],
               "duration:NUMBER": duration.toString()
       };
       send ExecutedTask("Stations/1/ApplicationBoard/Grasp", payload) to "mqttChannel"; }
```

System in action: Carton prototyping workstation instrumented with sensors

Experiment (1/2): Experimental setting

- 12 participants (students and campus staff)
- Each participant assembled 4 products, 2 of each variant (BCD, BG)
- Instructions (worker guidance) were provided on an 8 inch tablet
- Ground truth was captured on video that was annotated afterwards
- Best matching sensor event was found calculating the best match based on a simple undirected weighted (time) bipartite graph

Experiment (2/2): Results and discussion

- Result of the cameras detecting access to material boxes
 - RGB camera delivered a median F-score of 0.83
 - RGB+D camera delivered a median F-score of 0.56
- Effects on the detection
 - Anomalies: miss picks, moving hand over boxes while searching material
 - Physical setup:
 - camera angle and position (visibility/occlusion)
 - light conditions/shadows
 - shock resistance (carton workstation)
 - camera device (customer electronics)

Conclusion: Next steps towards a cyberphysical business process management

What has been done:

- Implementation and evaluation of an artifact supporting process elicitation in manual assembly systems in job shop manufacturing
- Setup in a laboratory setting and its evaluation proofed the concept What we're going to do in the future:
- Addressing the side effects and improving precision
- Adding detection of material parts
- Testing process mining methods on the event logs created: check conformance, enhance processes, and provide operational support