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Abstract. The Internet of Things (IoT) introduces various new chal-
lenges for business process technologies and workflow management sys-
tems (WfMS’s) to be used for managing IoT processes. Especially the
interactions with the physical world lead to the emergence of new error
sources and unanticipated situations that require a self-adaptive WfMS
able to react dynamically to unforeseen situations. Despite a large num-
ber of existing WfMS’s, only few systems feature self-x capabilities to
be used in the dynamic context of IoT. We present a retrofitting process
and generic software component based on the MAPE-K feedback loop
to add autonomous capabilities to existing WfMS’s. Using a smart home
example process, we show how to retrofit different WfMS’s in an inva-
sive and non-invasive way. Experiments and a brief discussion confirm
the feasibility of our retrofitting processes and software component to
add self-x capabilities to service-oriented WfMS’s in an IoT context.

Keywords: Workflow Management Systems · Self-management · Inter-
net of Things · Retrofitting.

1 Introduction

The application of Business Process Management (BPM) technologies in the
context of the Internet of Things (IoT) is a new and vibrant research field as
it promises easily configurable, flexible and reusable processes to be modelled,
executed and analysed among the typical IoT entities including sensors, actu-
ators, smart objects and humans. However, with these novel interactions and
application domain, new challenges for both research fields arise that need to
be addressed [9, 4, 13]. Especially the new dimension of interactions with the
physical world and associated sensors and actuators introduces additional re-
quirements for Workflow Management Systems (WfMS’s) as the IoT devices are
mobile, embedded and more constraint regarding their resources. The IoT enti-
ties and environment are the source of new errors, imprecisions and unforeseeable
situations for the process execution that an IoT WfMS has to cope with.

A common approach for dealing with these new kind of unanticipated sit-
uations is to implement feedback loops and adaptation mechanisms to make a
system self-aware and self-adaptive [7]. These mechanisms usually rely on goals
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specifying aspects regarding the expected outcome of particular actions, adap-
tation strategies for dealing with unexpected behaviour, and interactions with
sensors and effectors of the respective target systems to monitor and manipulate
the components of the self-managed system [11]. Several approaches investi-
gate the implementation of autonomic capabilities for specific WfMS’s–with and
without relations to IoT. Despite a very large number of existing WfMS’s be-
ing actively used in industry and academia, these implementations are tied to
specific proprietary WfMS’s and not reusable within other systems, though.

In this work, we present a general framework and process for retrofitting ex-
isting (legacy) WfMS’s with self-x capabilities (self-awareness, self-adaptation,
self-healing, etc.) based on the MAPE-K control loop from engineering self-
adaptive software systems and autonomic computing [5, 7]. We discuss two ways
of retrofitting service-oriented WfMS’s and existing processes using an imple-
mentation of the MAPE-K loop by a generic software component (Feedback
Service) to realize self-x mechanisms with respect to arbitrary quality criteria.
We show how to retrofit four different WfMS’s with the help of a simple scenario
process from the smart home domain as an example of an IoT environment.

2 Smart Home Scenario Process

The smart home is an excellent example of an IoT environment. It consists of
various sensors for environmental factors (e. g., light levels, temperature, hu-
midity) and actuators for controlling domestic appliances (e. g., light switches,
thermostats, service robots) as well as smart objects equipped with sensing tech-
nologies (e. g., RFID and NFC). All these IoT devices interact with each other,
with the physical environment and other objects, and most importantly with
the residents of the smart home. Due to the nature of these interactions with
the physical world and the entities being more imprecise, unreliable and un-
foreseeable, new sources of errors emerge for smart home control applications.
Therefore, a WfMS orchestrating the interactions among all involved smart home
entities on the business process level needs to be able to adapt the processes and
itself to deal with unanticipated situations and errors.

Fig. 1 shows a simple smart home process in BPMN 2.0 notation. The process
only switches on a specific light via a service call. In our case, a middleware for
IoT (OpenHAB1) provides a RESTful web service interface to all sensors and
actuators, including a HomeMatic dimmer switch for controlling the light. The
process shows the typical interaction between the virtual and physical world
in IoT environments. The WfMS calls the IoT middleware and with that the
control software of the light dimmer to influence the physical environment. After
executing this process, the light levels are expected to have reached a certain
threshold in the physical world and the room is assumed to be lit up (assumed
state). However, simple errors like a burnt or worn off light bulb may lead to
an incorrect assumption of the lighting state (light is on) compared with the

1 https://www.openhab.org/
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actual state in the physical world (light is off ), which may not be detected by
the WfMS or the dimmer switch. To detect and remedy this kind of issue, the
workflow execution has to be self-aware and self-adaptive to support the self-
healing of the process. For our scenario, an additional light sensor is used to
detect the broken light bulb and an alternative dimmer switch is triggered to
light up the room. We call this detection and repair of inconsistent physical and
virtual process execution states Cyber-physical Synchronization [20].
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Fig. 1. Scenario Process Showing the Synchronization of Cyber and Physical Worlds.

3 MAPE-K as Framework for Autonomous Capabilities

The MAPE-K control loop is the most common approach to implement self-x
capabilities for software systems operating in IoT and Cyber-physical Systems
(CPS) [16]. In this section, we introduce the MAPE-K (Monitor-Analyse-Plan-
Execute over a shared Knowledge) feedback loop [5] as the basic framework for
adding autonomic capabilities to WfMS’s.

3.1 The MAPE-K Feedback Loop applied to Processes

The application of the MAPE-K feedback loop [5] to manage processes and indi-
vidual process steps is discussed in detail in [20]. In general, data from additional
virtual and physical sensors is used to Monitor and Analyse the process execu-
tion with respect to certain success and error criteria defined in Goals. In case of
unexpected behaviour, a compensation strategy is selectedby the Planner and
performed by the Executor. The necessary Knowledge regarding sensors, actua-
tors and compensation strategies is contained in a shared knowledge base [20].

We use Goals to specify relevant data and success/error criteria for a process
used within the MAPE-K loops [20]. Fig. 2 shows our proposal of a generic ex-
tension of a component-oriented workflow meta-model [22] to specify these goals.
The basic concept is the ProcessStep, which can be composed of other process
steps or an atomic activity. By adding the ManagedStep interface to the abstract
ProcessStep class, a Goal can be specified for the process step (i. e., on the level
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Fig. 2. Meta-model Extensions to Specify Goals for Self-management of Process Steps.

Listing 1.1. Goal and Objective for SwitchOnLight Process Step.

1 {"name": "enough light for working",

2 "objectives": [

3 {"name": "kitchen light > 600 lux in 2 seconds",

4 "satisfiedCondition": "#light > 600",

5 "compensationCondition": "#objective.created.isBefore

6 (#now.minusSeconds (2))",

7 "contextPaths": [ "MATCH (thing) -[:type]->

8 (sensor {name: ’LightSensor ’})",

9 "MATCH (thing) -[:isIn]->(room {name: ’Kitchen ’})",

10 "MATCH (thing) -[:hasState]->(state:LightIntensity)",

11 "MATCH (state) -[: hasStateValue]->(value)",

12 "WHERE toFloat(value.realStateValue) > 0",

13 "RETURN toFloat(value.realStateValue) AS light" ]}]}

of atomic activities, subprocesses and entire processes). This goal aggregates one
or more Objectives defining data to be monitored in the contextPaths, success
criteria for the process execution in the satisfiedCondition, and error criteria
in the compensationCondition. Listing 1.1 presents the exemplary goal “enough
light for working” (Line 2) for our smart home process SwitchOnLight. The goal
contains one objective “kitchen light > 600 lux in 2 seconds” (Line 4). The sat-
isfied condition defines the success criterion for the process step as reaching a
light intensity of at least 600 Lux (Line 5). If this light value is not reached
within 2 seconds, an error is assumed as defined in the compensation condition
(Line 6). The context paths specify that the sensor values of the “LightSensor”
in the room “Kitchen” should be monitored and analysed (Lines 7–12).

3.2 Implementation in the Feedback Service

We implemented the MAPE-K loop (Autonomic Manager) as a component-
based micro-service called Feedback Service2 (FBS) with components for each

2 https://github.com/IoTUDresden/feedback-service
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phase of the MAPE-K loop [20]. During process execution, the “Legacy” WfMS
sends the goal and instance information regarding a managed process step to the
FBS (cf. Fig. 3). Monitoring agents being part of the Monitor collect and update
sensor data in the Knowledge Base continuously. The Knowledge Base is a cen-
tral graph database storing all information regarding the IoT entities and process
execution. Significant changes in relevant (according to the context paths) data
(Symptoms) are forwarded to the Analyser component. The Analyser evaluates
the execution based on the criteria defined in the satisfied condition (success) or
compensation condition (error). If the satisfied condition is evaluated positively,
then the FBS terminates the MAPE-K executions and the WfMS continues with
the “regular” process execution. If the compensation condition is evaluated posi-
tively, then a Change Request is sent to the Planner to search for a compensation
strategy. The Planner uses the determined mismatch contained in the change
request and an extensible Compensation Repository to find suitable replacement
resources and commands to be executed by the respective effectors. The derived
Change Plan is then enacted by the Executor instructing the IoT actuators. In
our example, the planner queries the knowledge base for an alternative process
resource (dimmer switch) in the same context (kitchen) able to influence the
same context factors (light levels) as the original resource and measured by the
respective sensors (light sensor) specified in the context paths [20].

4 Retrofitting Process

After introducing the MAPE-K control loop as framework for self-managed soft-
ware systems and its implementation for process-aware information systems by
the Feedback Service (FBS), we show how to add self-x capabilities to existing
service-oriented WfMS’s. We distinguish between an invasive and a non-invasive
retrofitting process. In general, we exploit the fact that most WfMS’s are de-
signed to orchestrate invocations of web services and applications to also call the
FBS in parallel to the “original” service calls defined in the business processes.

4.1 Invasive Retrofitting

The invasive retrofitting process requires modifications to the WfMS’s underlying
workflow meta-model as well as to its execution logics. The meta-model has to
be adapted as proposed in Sec. 3 to support the specification of Goals and
Objectives for a process, subprocess and atomic process step. Fig. 3 shows the
required changes regarding the execution behaviour of the “legacy” WfMS when
executing a managed process step. In parallel to executing the basic process
activity, the WfMS has to evaluate if this activity should be managed and issue
a service call containing the respective goal to the FBS. The WfMS then has to
wait/listen for a response from the FBS concerning the execution of the MAPE-K
loop and the State of the goal (success or no success) [20]. The process execution
continues w. r. t. this result–either execute the next process steps or initiate the
WfMS’s error handling mechanisms when the FBS is not able to fix the issue.
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Fig. 3. Retrofitting of Existing WFMS’s with the Feedback Service.

4.2 Non-invasive Retrofitting

While the invasive retrofitting process requires modifications to the meta-model
and execution logics of the WfMS, the non-invasive retrofitting process relies on
modifying the existing process models. The additional task of invoking the FBS
depicted in Fig. 3 has to be modelled as an explicit process activity describing an
(asynchronous) call to the FBS in parallel to the managed process step. This call
contains the respective goal as input parameter. The process execution continues
once the “regular” process step and FBS call were executed successfully.

5 Evaluation

In this section, we show the application of both retrofitting processes to existing
WfMS’s. The chosen WfMS’s are open source software projects that rely on
different workflow notations and execution engines. The process to be executed
is the smart lighting process described in Sec. 2. We “break” the lamp to be
switched on by removing its bulb, which cannot be detected by the respective
WfMS or HomeMatic switch, i. e., the light is still off. The FBS uses an additional
TinkerForge light sensor and a second dimmer switch to check and repair the
“broken” process. This process is executed in a controlled lab environment once
per WfMS. The WfMS’s, FBS and OpenHAB run on a central computer (Intel
Core i7, 4x3.1 GHz, 8 GB RAM, 32 GB SSD, 2 TB HDD, Ubuntu Linux 14.04).
The processes and services used in the experiments can be found on GitHub3.

5.1 Invasive Retrofitting of Existing WfMS’s

PROtEUS The PROtEUS WfMS is designed to be used in the context of IoT
and CPS [21]. It relies on a component-based architecture [21] and process meta-
model [22]. We extended the meta-model and execution behaviour as suggested
in Section 3. Fig. 4 shows the process model of the smart lighting process. The

3 https://github.com/IoTUDresden/fbs-retrofit
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goal: enough light for working
 

Fig. 4. Retrofitted Smart Lighting Process for PROtEUS.

basic process activity is a RESTful service call to the IoT middleware to switch on
the light. This process step is augmented with the goal attribute from Listing 1.1.
The execution of the LightInvoke process step–an asynchronous REST service
to the middleware–took 193 ms with PROtEUS. The parallel invocation, error
detection and compensation of the broken light bulb by the FBS dimming up the
second light stepwise from 85 Lux to 657 Lux took approx. 24 s. A more detailed
performance evaluation of PROtEUS and the FBS can be found in [20].

5.2 Non-invasive Retrofitting of Existing WfMS’s
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Fig. 5. Retrofitted Smart Lighting Process for Activiti.

Activiti The extended BPMN 2.0 smart lighting process executed with Activ-
iti4 6.0.0 is depicted in Fig. 5. The Input process step is used to provide input
parameters (goals). The basic process activity is the LightInvoke service task to
call a custom service triggering the dimmer switch via OpenHAB. In parallel, the
FBSInvoke service task calling the Feedback Service with the goal parameters
is specified. Activiti relies on intermediate services that are locally deployed for
executing external functionality. In our example, these services are custom im-
plementations that delegate the calls to the actual RESTful services provided by
the IoT middleware and FBS. The execution of the basic LightInvoke step took
459 ms with Activiti. The parallel invocation of the Feedback Service dimming
up the second light stepwise from 89 Lux to 766 Lux took approx. 22 s.

YAWL Engine The extended YAWL smart lighting process executed with
the YAWL engine5 4.2 is depicted in Fig. 6. The YAWL system also relies on

4 https://www.activiti.org/
5 http://www.yawlfoundation.org/
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Fig. 6. Retrofitted Smart Lighting Process for YAWL.

custom services/classes that are deployed locally to invoke external applications
or services. The input and output services print input/output parameters for
debugging purposes. The LightInvoke step is the basic process activity that
calls the IoT middleware delegated via our custom service to activate the light
dimmer. The FBSInvoke service is the “retrofitting” process step that invokes
the FBS with input parameters (goals) in parallel. The execution of the basic
LightInvoke step took 171 ms with the YAWL system. The invocation of the FBS
dimming up the second light from 81 Lux to 685 Lux took approx. 22 s.

Apache ODE The extended WS-BPEL smart lighting process executed with
Apache ODE6 1.3.8 is depicted in Fig. 7. The first process step is used to receive
input data and assign it to the following requests. The LightCall branch contains
the assignment of input parameters to the following basic LightInvoke step,
which calls a custom service to then call OpenHAB to switch on the light. In the
parallel FBSCall branch, the FBSInvoke process step invokes a custom service
to execute the FBS with goals provided as input parameters. Apache ODE also
requires us to provide intermediate services to delegate the service calls to the
actual RESTful web services of the middleware and FBS. The execution of the
basic LightInvoke step took 98 ms with Apache ODE. The invocation of the FBS
dimming up the second light from 93 Lux to 639 Lux took approx. 24 s.

6 Discussion

With the MAPE-K feedback loop as general framework, we are able to provide
a flexible way of retrofitting existing WfMS’s with autonomic capabilities. Due
to the Feedback Service being implemented as a micro-service, a loose coupling
with service-oriented WfMS’s is possible. The retrofitting processes rely on an
additional invocation of the FBS in parallel to the execution of the basic work-
flow activity, which is straightforward to realize as most WfMS’s main purpose is
the orchestration of web services. The invasive way of retrofitting requires minor
changes to the workflow meta-model and internal mechanisms of the execution
engine, which is not always possible due to inflexible and proprietary software
architectures and the lack of support for service invocations–requiring a tighter
integration of the FBS as an additional software component of the respective

6 http://ode.apache.org/
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Fig. 7. Retrofitted Smart Lighting Process for Apache ODE.

WfMS. However, compared to the non-invasive way, the modelling of the ba-
sic workflows and additional goals can be introduced more naturally into the
process landscape and tools. The non-invasive retrofitting process does not re-
quire changes to the underlying WfMS but to the existing process models. The
modelling of the service call with the goal parameters parallel to the managed
process step is less intuitive but maintains compatibility with the basic WfMS.
Software or process engineers have to decide about which retrofitting process to
choose based on these criteria. The selection of an appropriate “basic” WfMS de-
pends on features and properties the WfMS has to provide and fulfil (e. g., formal
verification or scalability) in the respective application domain or enterprise.

The operations executed by the Feedback Service introduce only little over-
head to the overall process execution. In our evaluation examples, the major
parts of the MAPE-K execution times relate to performing and analyzing ac-
tions in the physical world (e. g., increasing light levels by actuators and waiting
for the sensors to detect these changes), which are usually much slower than
virtual computations. The execution times for the basic service invocations are
in similar orders of magnitude for all tested WfMS’s. The Feedback Service adds
the same execution times to the overall process execution.

Using the Feedback Service on the more abstract level of business processes
to manage mostly discrete and asynchronous workflow activities proves to be
feasible for our smart home IoT use case. Its suitability for managing more real-
time demanding and synchronous processes on layers closer to the hardware
remains to be investigated. The component-based architecture of the FBS facil-
itates the exchange and improvement of the individual algorithms used in the
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phases of the MAPE-K loop. Our implementations of the analysis and plan-
ning phases are relatively simple but can be exchanged with more sophisticated
approaches, e. g., from artificial intelligence as proposed in [14]. The Feedback
Service can be used with respect to arbitrary context factors, key performance
indicators, services levels, virtual and physical sensor values and other criteria
to be considered within the MAPE-K feedback loops. Based on that, various
self-x properties (self-awareness, self-adaptation, self-healing, self-optimization,
self-configuration, etc.) can be added to existing WfMS’s.

7 Related Work

A large number and variety of WfMS’s exist and are widely used in academic
and industrial contexts. Various works discuss the realization of autonomic ca-
pabilities for WfMS’s in general (e. g., the MABUP system [18] or ViePEP [8])
and in the context of IoT and CPS (e. g., SmartPM [14], SitOPT [23] or Wise-
Ware [15]). These approaches tie their realization of self-x mechanisms to specific
self-developed WfMS’s, which prevents reuse with other systems. With our im-
plementation of the MAPE-K control loop in the Feedback Service [20], we are
able to flexibly couple the autonomic service with other “legacy” WfMS’s. Vari-
ous works discuss aspects regarding the implementation of adaptive and flexible
business processes most prominently as part of the ADEPT workflow system [6]
and follow-up works [17]. Worklets [1] and Exlets [2] provide mechanisms for dy-
namic flexibility and exception handling in workflows. These approaches do not
relate to IoT and they do not implement feedback loops to achieve self-* capabil-
ities. However, they could be integrated into the planning and execution phases
of the proposed MAPE-K loop for workflows to implement more sophisticated
planning and adaptation strategies.

A general approach to implement self-managed systems is proposed in [11]
and follow-up works. The retrofitting of a manufacturing system with fault-
tolerance and security based on an external event-coordination layer is proposed
in [24]. In [12] the authors present a way to add adaptivity to an existing scien-
tific workflow engine by new components realizing the MAPE-K loop. Sensors
provide data about the status of jobs running on the computation grid; once re-
sources are available, the workflow engine is instructed to execute new workflows.
The retrofitting of assembly processes with more high-level business processes
based on components and services to facilitate synchronization across workflows
is discussed in [3]. A general methodology for retrofitting autonomic capabilities
onto legacy systems is presented in [19]. Sensors gather information (Probes)
from the legacy systems that are analysed by Gauges, decision and coordina-
tion of adaptations are performed by controllers instrumenting the effectors of
the legacy system. These works discuss specific retrofitting processes or gen-
eral frameworks for adding autonomous capabilities to legacy systems based on
feedback loops. None of the approaches discusses this retrofitting specifically for
WfMS’s. Our retrofitting processes and software component can be used with
arbitrary WfMS’s in IoT but also in more traditional business process domains.
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8 Conclusion

In this work, we presented an approach for retrofitting existing workflow man-
agement systems (WfMS’s) with autonomous capabilities to be able to handle
unanticipated situations that emerge with new properties of IoT environments.
We presented an invasive and a non-invasive way of retrofitting WfMS’s using a
generic software component that implements the MAPE-K feedback loop from
autonomic computing. Our approach proves feasible for adding self-healing mech-
anisms to existing WfMS’s executing smart home processes, but it can also be
applied in wider business process contexts with respect to arbitrary self-x capa-
bilities and service-oriented WfMS’s. The application of our retrofitting frame-
work to WfMS’s operating in production contexts to implement self-adaptive
workflows for Industry 4.0 is subject to future work [10]. This domain usually
imposes more real-time and safety-related constraints on the process executions.
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